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NUMERICAL INVESTIGATION OF THE PROCESS OF NONDEFORMABLE CYLINDER 

PENETRATION AT CONSTANT VELOCITY INTO A COMPRESSIBLE FLUID 

S. M. Bakhrakh, O. A. Vinokurov, G. V. Gorbenko, 
N. P. Kovalev, Yu. A. Osipov, and T. A. Toropova 

UDC 531.66 

Detailed investigation of the process of nondeformable solid penetration into different 
media is of great interest in connection with a number of scientific-technical problems of 
practical importance. Analytical, experimental, and numerical methods (see [1-3, 4-6, 7-10], 
respectively, say) are utilized to solve the problems occurring here. Because of the com- 
plexity of solving the problems by an analytical method, the analysis of a limited number of 
situations turns out to be accessible. Formulation of experiments in this area is fraught 
with a number of difficulties. Moreover, the integrated characteristics of the process, for 
instance, the depth of penetration of the body, are usually fixed in the experiments. A de- 
tailed pattern of impactor interaction with deformable compressible media can be obtained by 
using the numerical solution of similar problems. 

The process of bodies of cylindrical shape penetrating a compressible fluid is inves- 
tigated in this paper by numerical modeling methods. Dependences of the main characteris- 
tics of the process (the drag force F, the cavern location relative to the body) on the 
Mach number M = V/c0 (V is the~insertion velocity, and c o is the sound speed in the obstacle 
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2 i 

2 
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material) are obtained for penetration along the normal to the surface. 

For high confidence in the results the computations were performed by two different 
numerical methods included in the set of programs SIGMA [ii]. An Euler counting mesh and a 
fixed body were used in one numerical method; the fluid motion was given relative to the 
fixed counting mesh. 

A regular quadrangular counting mesh whose location remained unchanged relative to the 
moving cylinder was used in the other method. The crux of this approach is that the count- 
ing mesh in the obstacle is shifted together with the penetrating body such that the fini- 
tial mutual location of the mesh and the penetrating body is practically conserved through- 
out the whole computation. Such mesh motion can be assured by giving the shift of each of 
the mesh points (i, k) according to the law r~r~-~ (u (r~h, Vzh are the radius vec 
tor and the velocity of the given point). 

Computations of such a kind were performed on the basis of the method LEGAK [12] in 
which substance concentration and a special algorithm constraining the counting diffusion of 
the components are relied upon for the numerical modeling of the flows of an inhomogeneous 
medium (containing several substances). The results of the computations performed by using 
different numerical methods are in good agreement. 

Formulation of the problem at the initial instant (t = 0) is represented in Fig. i, 
where the domain 1 is the nondeformable cylindrical impactor of radius R 0 and length d. At 
the initial time the impactor moves at the velocity V 0. It is assumed that the impactor 
mass is infinite, i.e., in this case the impactor velocity is constant [V(t) ~ V0]. The 
obstacle has the initial density P0, the equation of state is taken in the Mie-Gruneisen 
form with parameters n = 6, F = 0.i, the coefficient of porosity is K = i, and the speed of 
sound c o varied. At the initial time the velocity and pressure in the obstacle are zero, 
and air is a perfect gas with 7 = 1.4. In such a formulation three parameters P0, Co, V0 
govern the problem. 

Numerical parameters of modifications of the problem formulated above are presented in 
Table 1 (in these computations R 0 = i, d = 3.5, the cylinder length has no value and was 
selected, by starting from convenience in performing the computations). 

After collision of the impactor with the deformable obstacle the flow pattern for all 
modifications of the problem is qualitatively identical and represented in Fig. 2, where 
the location of the impactor, of the isobar p = 0.01, of the isochor p = 0.98 is for differ- 
ent times for computation 5 (M = 4), and later the dimensionless time T = tV0/R0, the pres- 
sure P = p/(p0V02), and the density p = P/P0 are given. It is seen that after the beginning 
of the collision with the obstacle, the cylinder moves in the cavern such that the insertion 
drag force F acts only on the cylinder endface for all the times considered (an analogous 
result was obtained earlier, see [9, i0], say). 
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TABLE 3 

- -  0,5 
4,9 1 
4,i 2 
3,6 4 
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t,02 
l,l 
t,2 
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0,98 4 
t ,09 t 
t,24 3 
t,32 t,5 

The characteristic form of the dependence of the drag force on the time for M = 2 is present- 
ed in Fig. 3 (c x = 2F/(p0V02S), S = ~R02 is the area of the cylinder endface). As already 
noted [9, i0], the insertion process can provisionally be separated into two stages in the 
time range considered, a nonstationary phase which lasts a brief time after the beginning of 
the collision and in which the drag force changes abruptly, and a quasistationary stage in 
which c x is practically constant. 

In the initial time t = 0 the moving cylinder can be considered as a flat piston moving 
at the velocity V 0. In this case a pressure p = p0VoD acts on the cylinder endface such 

that 

max 
c~ = 2D/V o (i) 

(D is the velocity of shock propagation in the obstacle material). For an equation of state 
in the Mie-Gruneisen form, the dependence of D on V 0 is described approximately by the rela- 
tionship D = c o + iV 0, where the function of the parameters of the equation of state is ~ = 
~(n, c o , F, P0). For the majority of materials ~ = 1.4-1.7 [13]. In this case 

c~ ~x = (2% + kVo)/V o = 2~ + 2/M. (2 )  

The dependence of cxmaX on the Mach number is presented in Fig. 4 for X = 1.5, where 
the points 1 are the two-dimensional computation and 2 a computation using (2). 

The shock adiabatic parameters [13] and values of cxmaX obtained from (i) (here V 0 = i, 

h = P/P0, Pim = D/V0) are presented for different values of c o in Table 2 for the equation 
of state parameters (P0 = i, n = 6, F = 0.i) used in computations performed. 

The values of Cx max found in the corresponding two-dimensional computations are suffici- 
ently close to the theoretical values (the maximal difference is less than 10%). 

The dependence of c x on T (~ = tV0/R ~) for different M obtained in the two-dimensional 
computations is displayed in Fig. 5. It is found in the computations that during the time 
T = 1 the value of c x drops from its maximum cxmaX to a certain value cx(M) and later practi- 
cally does not change, the quasistationary insertion stage sets in. 

Quasistationary values of c x are presented in Fig. 6 for the collision of a cylinder 
with an obstacle for different M {for an incompressible fluid (M = 0), Cx= 0.82 [2]}. 
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The dependence of c x for a cylinder on M, obtained on the basis of the two-dimensional 
computations is described sufficiently well by the semi-empirical formula 

c= = 0.82(1 + M(~ - -  O,5)y(l + M(~ --  t)). (3)  

This i s  seen from Table 3 (k = 1 .53) .  The p r e s s u r e  d i s t r i b u t i o n  over  the  c y l i n d e r  endface  
in the quasistationary stage is presented in Fig. 7 for different M, where the points 1 are 
for M = i, P0 = i, c o = 0.5, V 0 = 0.5 and the points 2 for M = i, P0 = 2, c o = i, V 0 = i. 

As already mentioned above the cylinder moves in a cavern after the beginning of the 
collision, for all the problem modifications considered above. The cavern location relative 
to the cylinder surface was investigated numerically for different M in the quasistationary 
motion stage. It must be noted that definite arbitrariness exists in finding the cavern 
boundary from the two-dimensional computation. For instance, the dependence of the substance 
density P/P0 is given in Fig. 8 as a function of the distance from the cylinder side surface 
y/R 0 for x/R 0 = 1.6 (M = i). In principle, any value 1.6-2 can be taken as the cavern bound 
ary at this point depending on what level of P/P0 = 0.i-i is taken as the cavern boundary 
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criterion. Later we agree to consider the location of the isochor P/P0 = 0.98 in space as 
the cavern boundary. The cavern location relative to the cylinder surface in the quasista- 
tionary insertion phase is shown in Fig. 9 for M = 0.5, i, 2, 4, lines 1-4 [the line 5 
is a computation using (4)]. It is seen that the higher the M (the higher the insertion 
velocity V 0 for fixed co), the closer does the cavern approach the surface of the cylinder 

being inserted. 

Represented for comparison in Fig. 9 is also the cavern location found in experiments 
on axisymmetric flow around a disc by an unlimited stream of water for M < i. The profile 
for the leading part of the cavern (x/R 0 < 5) obtained by processing cavern photographs is 
presented in [2, p. 118] 

y/Ro = (1 § 3.~/Ro)W3. (4) 
Taking into account the above about the certain arbitrariness in the selection of the 

cavern boundary location in two-dimensional computations and the presence generally of the 
same arbitrariness in the cavern determination when processing the experiment photographs, a 
deduction can be made about the satisfactory agreement between the theoretical and experimen- 

tal data on the cavern shape. 
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